Notes

Contribution from the Departments of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, and Queen Elizabeth College, University of London, Kensington, London W8 **7AH,** England

Reaction of Nitric Oxide with Hyponitrous Acid: A Hydrogen Atom Abstraction Reaction

Mohammad Javaid Akhtar,^{1a} Francis T. Bonner,*^{1a} and Martin N. Hughes*Ib

Received October 26, 1984

The decompositon of hyponitrite in aqueous solution systems has been investigated over a broad acidity range.²⁻⁸ In the pH region in which $HN₂O₂$ is dominant, this species is known to undergo heterolysis at an N-O bond to yield N_2O and OH⁻ as products (eq 1) in a first-order process $(k_1 = 7.2 \times 10^{-4} \text{ s}^{-1} \text{ at }$
 $-O-N=N-OH \rightarrow N_2O + OH$ (1)

$$
-O-N=N-OH \rightarrow N_2O + OH \tag{1}
$$

pH 9.2 and 25 °C).² In acid solution, hyponitrite is present as hyponitrous acid and is considerably more stable (e.g., $k_1 = 1.6$) \times 10⁻⁴ s⁻¹ in 1.24 M HClO₄ at 70 °C),³ although an acidity dependent pathway that appears above about $1 M H⁺$ reduces this stability substantially in concentrated acid.^{3,4} In addition to the "normal", N_2O -producing reaction, an additional chain reaction has been reported and investigated,^{3,5} for which the products N_2 , NO_3^- , N_2O , and NO have been observed. Buchholz and Powell⁵ found this reaction to be inhibited by C_2H_5OH and reported it to proceed via an initial buildup of $HNO₂$ followed by the HNO₂-H₂N₂O₂ reaction (eq 2), with the NO product ascribed
 $H_2N_2O_2 + HNO_2 \rightarrow N_2 + NO_3^- + H^+ + H_2O$ (2)

$$
H_2N_2O_2 + HNO_2 \rightarrow N_2 + NO_3^- + H^+ + H_2O \qquad (2)
$$

to $HNO₂$ disproportionation and $N₂O$ to simultaneous occurrence of the "normal" path (eq 1). Recent studies of the reaction (2) beyond those previously published^{5,9} have suggested that an additional reaction may occur in these systems, i.e. a reaction between NO and $H_2N_2O_2$. In particular, it has been observed that NO is absent in reaction systems containing $HClO₄$ and characterized by high $H_2N_2O_2$ concentration, despite its expected presence as a product of $HNO₂$ disproportionation, and that an induction period that is normally observed for the overall reaction in the presence of excess $H_2N_2O_2$ over HNO_2 disappears when NO is bubbled into the reaction system.¹⁰ The reaction rate is also increased by the presence of NO. Isotopic studies indicate that, under conditions in which NO is observed as a product of the $HNO₂-H₂N₂O₂$ reaction, its origin cannot be entirely from $HNO₂$ disproportionation because a significant proportion of its N atoms arise from $H_2N_2O_2$.¹⁰ Buchholz and Powell commented without elaboration that "NO is rapidly absorbed by hyponitrous acid solutions at 1 **M** H+". **If** there is a direct reaction between NO and $H_2N_2O_2$, the possibility is raised that H atom abstraction by

- (1) (a) State University of New York at Stony Brook. (b) **Queen** Elizabeth College.
- Hughes, **M.** N.; Stedman, G. *J. Chem. SOC.* **1963,** 1239. Hughes, **M.** N.; Stedman, G. *J. Chem. SOC.* **1964,** 163. (2)
- (3) (4)
- Buchholz, J. R.; Powell, R. E. *J. Am. Chem. SOC.* **1963,** *85,* 509.
- Buchholz, J. R.; Powell, R. E. *J. Am. Chem. SOC.* **1965,** *87,* 2350. Polydoropoulw, C. N.; Pipinis, **M.** *Z. Phys. Chem.* (Wiesbaden) **1964,** (6) *40,* 322.
- Anderson, J. H. *Anal. (London)* **1963,** *88,* 494.
- (8) Akhtar, **M.** J.; Balschi, J. **A,;** Bonner, F. T. *Inorg. Chem.* **1982,** 21, 2216.
- Hughes, **M.** N.; Stedman, G. *J. Chem. SOC.* **1963,** 4230.
- Hughes, **M.** N.; Wimbledon, P. **E.,** unpublished results.

NO may be involved, as has been reported previously in the case of NO reduction by hydroxylamine in alkaline solution.¹¹

To establish whether or not a direct $NO-H_2N_2O_2$ reaction occurs, gas products of $H_2N_2O_2$ decomposition in 5 **M** HClO₄ with and without C_2H_5OH as chain inhibitor, and in the absence and presence of added NO gas, were measured at extended time intervals in a reaction vessel with phase mixing by mechanical vibration and analysis by gas chromatography employing CF_4 as a reference gas, all as reported elsewhere.^{12,13} As shown in Table **I,** the results of these experiments provide a clear indication that reaction between NO and $H_2N_2O_2$ occurs, both with and without chain inhibitor. With no C_2H_3OH added, a very large increase in the yield of N_2 is observed when NO is present, and the N_2O yield remains approximately constant, rather than increasing with time as it does in the absence of NO. Column *5* of Table **I** shows that substantial NO has **been** consumed, although the actual molar amount is unknown because a potential for NO production exists within the reaction system. With C_2H_5OH added, column 5 again indicates that net NO has been consumed, although considerably less than in the non-chain-inhibited case. The apparent yield of N_2 O based upon $(H_2N_2O_2)_0$ alone and the product ratio n_{N_2}/n_{N_2O} do not appear strongly affected by the presence of NO in this case.

Tracer experiments were carried out under conditions similar to those described above, with ¹⁵NO added (96.2% ¹⁵N, Stohler) as reactant. The results, as shown in Table 11, reveal a dramatic difference between the N_2O products formed in the two cases. Without chain inhibitor present, all the varieties of doubly labeled, singly labeled, and unlabeled N₂O were observed, at a somewhat greater than twofold isotopic dilution relative to the initial reactant gas. The isotope distribution observed in case A is not far removed from complete randomness at the observed level of 40.0% ¹⁵N (values expected for random distribution *(elm,* fraction): 46, 0.160; 45, 0.480; 44, 0.360). In the presence of C_2H_5OH , on the other hand, formation of the two singly labeled species $^{14}N^{15}NO$ and ¹⁵N¹⁴NO (mass 45) is virtually suppressed, and the N₂O product consists almost entirely of doubly labeled (mass 46) and unlabeled molecules (mass 44). In both cases, mass spectrometry showed no more than a small extent of incorporation of ^{15}N into N_2 product, and unreacted NO showed very little isotopic dilution in both cases (to 94.1% in case A and 94.7% in case B).

The results show that under chain-inhibited conditions a substantial proportion of the N_2O product consists of reduced NO, since both N atoms in N_2O at mass 46 arise from ¹⁵NO. The small percentage of singly labeled N₂O (mass 45) immediately rules out the possibility of NO attack at an N atom of $H_2N_2O_2$

$$
\begin{aligned}\n\text{(eq 3) as anything more than a minor reaction pathway. The only} \\
^{15} \text{NO} + \text{HONNOH} \rightarrow \text{HON(^{15}NO)NOH} \rightarrow \\
&\quad N^{15} \text{NO} + \text{HNO} + \text{OH} (3)\n\end{aligned}
$$

attack that appears to explain the observations is a reaction of H atom abstraction at NO, forming $H^{15}NO$ and the radical \cdot ONNOH. The H¹⁵NO then dimerizes to form doubly labeled $N₂O(mass 46)$, while the radical decomposes to yield unlabeled $N_2O(mass 44)$ and OH (eq 4-6). The latter species is then trapped by C_2H_5OH . by C_2H_5OH .
¹⁵NO + HONNOH $\rightarrow H^{15}NO +$.ONNOH

$$
NO + HONNOH \rightarrow H^{15}NO + \cdot ONNOH
$$
 (4)

$$
\cdot ONNOH \rightarrow N_2O + OH
$$
 (5)

$$
•ONNOH \rightarrow N_2O + OH
$$
 (5)

$$
.ONNOH \rightarrow N_2O + OH
$$
 (5)
H¹⁵NO + H¹⁵NO \rightarrow ¹⁵N¹⁵NO + H₂O (6)

- (12) Bonner, F. T.; Pearsall, K. **A.** *Inorg. Chem.* **1982,** 21, 1973. (13) Pearsall, K. A.; Bonner, F. T. *J. Chromafogr.* **1980,** 200, 224.
-

⁽¹¹⁾ **Bonner,** F. T.; Dzelzkalns, L. **S.;** Bonnucci, J. **A.** *Inorg. Chem.* **1978,** 17, 2487

Table I. Gas Products of Reaction Systems Containing H₂N₂O₂ in 5.0 M HClO₄ at 25 °C, with and without Added NO and with and without $C₂H₅OH$ as Chain Inhibitor

	t, h	$n_{\rm N_2O}/$ $(n_{\rm H_2N_2O_2})_0$	$n_{\rm N_2}$ $n_{\rm N_2O}$	$(n_{\rm N_2} + n_{\rm N_2O})/$ $(n_{\rm H_2N_2O_2})_0$	$10^5 \Delta n_{\rm NO}$ mol
		A. No C ₂ H ₅ OH Added ^a			
1. $(P_{\text{NO}})_0 = 0$; $10^5 (n_{\text{H}_2\text{N}_2\text{O}_2})_0 = 5.93$	18	0.28	0.48	0.41	
	24	0.31	0.43	0.45	
	87	0.55	0.22	0.67	
2. $(P_{\text{NO}})_0 = 43.8 \text{ torr}; 10^5 (n_{\text{H}_2\text{N}_2\text{O}_2})_0 = 4.44$	67	0.32	1.04	0.65	8.52
	98	0.32	1.56	0.83	4.98
	118	0.29	1.71	0.78	6.13
	166	0.29	1.77	0.81	6.80
		B. 0.5 mL of C_2H_5OH Added ^a			
1. $P_{\rm NO}^{\circ} = 0$; $10^5 (n_{\rm H_2N_2O_2})_0 = 4.42$	46	0.47	0.17	0.55	
	170	0.75	0.10	0.83	
	210	0.98	0.075	1.06	
2. $P_{\text{NO}^{\circ}} = 50.9 \text{ torr}; 10^5 (n_{\text{H}_2\text{N}_2\text{O}_2})_0 = 5.26$	42	0.49	0.11	0.54	2.53
	96	0.69	0.095	0.76	3.55
	163	0.79	0.080	0.85	2.92
	250	0.94	0.054	0.99	3.47

"Total solution volume 10.0 mL.

Table II. Mass Spectrometric Analyses of N₂O Product of H₂N₂O₂ Decomposition and Reaction with ¹⁵NO (96.2%) in 5.0 M HClO₄ at $25 °C$

	e/m	fraction of total N ₂ O	% 15N in total N,O
A. No C ₂ H ₂ OH Added			
P_{NO}° = 45.0 torr;	46	0.1725	
$10^5(n_{\text{H}_2\text{N}_2\text{O}_2})_0 = 4.59; t = 190 \text{ h}$	45	0.4547	40.0
	44	0.3728	
$B. 0.5$ mL of $C2H3OH$ Added			
P_{NQ}° = 36.0 torr; t = 250 h	46	0.1542	
	45	0.0239	16.6
	44	0.8219	

In the absence of chain inhibition, the free radical OH may interact with -0NNOH to yield NO *(eq* **7)** and with NO to yield $HNO₂$ (eq 8). The latter will in turn be expected to undergo disproprotionation to yield NO and $NO₃⁻$ (eq 9), so that some nitrate should be found among the NO- $H_2N_2O_2$ reaction products (but has not **been** observed directly by **us).** The near randomness of isotopic distribution observed in $N₂O$ in the non-chain-inhibited case indicates that it is produced largely by HNO dimerization, so that H atom abstraction **on** the part of unlabeled NO clearly comes into play **on** an important scale **in** this case (eq 10). This downgrades the importance of eq 4 as an N_2O source. To account for this and to identify the major source of the very abundant N_2 product, as well as of OH radicals, we postulate attack of NO at oxygen **on** .ONNOH to produce these two products, plus NOz **(eq** 11). Through its expected disproportionative hydrolysis **(eq** 12), the $NO₂$ will become a further source of both $HNO₂$ and $NO₃$. The reaction pathway described above is summarized in eq 7-14 of Scheme **I.**

Scheme I

 $OH + ONNOH \rightarrow 2NO + H_2O$ **(7)**

+ \cdot ONNOH \rightarrow 2NO + H
¹⁵NO + OH \rightarrow H¹⁵NO₂ **(8)** $^{15}NO + OH \rightarrow H^{15}NO$,

$$
3H^{15}NO_2 \rightarrow 2^{15}NO + H^+ + NO_3^- + H_2O
$$
 (9)
NO + HONNOH \rightarrow HNO + ONNOH (10)

$$
NO + HONNO + + ONNO + 0NNOH
$$
 (10)
NO + 0NNOH \rightarrow ONONNOH \rightarrow NO₂ + N₂ + OH (11)

2N02 + HzO - HNOz + H+ + NO3- HI5NO + HI5NO - I5NI5NO + H20 (12)

$$
H^{15}NO + H^{15}NO \rightarrow {}^{15}N^{15}NO + H_2O
$$
 (6)

$$
H^{15}NO + H^{15}NO \rightarrow {}^{15}N^{15}NO + H_2O
$$
 (6)

$$
H^{15}NO + HNO \rightarrow {}^{1}/{}_{2}{}^{15}NNO + {}^{1}/{}_{2}N^{15}NO + H_2O
$$
 (13)

$$
HNO + HNO \rightarrow N_2O + H_2O
$$
 (14)

$$
HNO + HNO \rightarrow N_2O + H_2O \tag{14}
$$

In addition to the above scheme, the possible reactions eq 15 and 16 have been postulated by Buchholz and Powell; however, these seem less plausible to **us** than eq 7-14.

HONNOH + NO \rightarrow HNO₂ + N₂ + OH (15)

 $HONNOH + 0NNOH \rightarrow 2NO + N_2 + OH + H_2O$ (16)

Acknowledgment. The authors gratefully acknowledge the North Atlantic Treaty Alliance's support of their collaboration. **Registry No. NO, 10102-43-9; H₂N₂O₂, 14448-38-5.**

> Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Synthesis and X-ray Structural Characterization of a Bimetallic Rh-Au Complex with Bridging 2-[Bis(diphenylphosphino)methyl]pyridine (PNP) Ligands

Robert **J.** McNair, Per **V.** Nilsson, and Louis H. Pignolet*

Received August 24, 1984

Heterobimetallic complexes with bidentate phosphine and phosphine-pyridine type ligands to hold two metals in close proximity have received considerable attention in recent years.¹⁻¹⁰ Bifunctional ligands such as **2-(diphenylphosphino)pyridine,** Ph₂Ppy, have proved to be particularly useful in constructing

-
- (1) Farr, J. P.; Olmstead, M. M.; Balch, A. L. *Inorg. Chem.* 1983, 22, 1229.
(2) Farr, J. P.; Wood, F. E.; Balch, A. L. *Inorg. Chem.* 1983, 22, 3387.
(3) Guimerans, R. R.; Wood, F. E.; Balch, A. L. *Inorg. Chem.* 1984, 2
- 1307.
- **(4)** Farr, J. P.; Olmstead, M. M.; Rutherford, N. M.; Wood, F. E.; Balch, **A.** L. Organometallics **1983, 2,** 1758. *(5)* (a) Wood, F. E.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. *SOC.*
- **1983,** *105,* 6332. (b) Wood, F. E.; Hvoslef, J.; Balch, A. L. J. Am. Chem. **SOC. 1983,** *105,* **6986.** (6) Langrick, C. R.; Pringle, P. G.; Shaw, B. L. Znorg. Chim. Acta **1983,**
- 76, L263.
- (7) Blagg, A.; Hutton, **A. T.;** Pringle, P. G.; Shaw, B. L. Znorg. Chim. Acta **1983,** 76, L265.
- (8) Cooper, G. R.; Hutton, **A.** T.; McEwan, D. M.; Pringle, P. G.; Shaw, B. L. Znorg. Chim. Acta **1983,** 76, L267.
- (9) **Hutton, A. L.; Pringle, P. G.; Shaw, B. L. Organometallics 1983, 2, 1889.**
- **(10)** Hoskins, B. F.; Steen, R. J.; **Turney, T.** W. Znorg. Chim. Acta **1983,** 77, L69.